Skip to contents

This function draw a summary plot of hdmax2 method results

Usage

plot_univariate_cat(object, plot_type = "all_plot")

Arguments

object

results from hdmax2 step 2

plot_type

"all_plot" by default generate all proposed plots , elsewhere choose one individual plot among : "plot_ACME", "plot_Prop_Med", "plot_overall_effects", "plot_effect_size"

Value

Summary plot for ACME, PM, OIE, effects interpretation

Author

Florence Pittion, Magali Richard

Examples

# Load example dataset
simu_data = hdmax2::simu_data
K = 5
# Run {hdmax2} step 1
hdmax2_step1 = hdmax2::run_AS(
  exposure = simu_data$X_categorial,
  outcome = simu_data$Y_continuous,
  M = simu_data$M,
  K = K
)
#> Running first regression with univariate exposure variable.
#> Running second regression.
#> Running max-squared test.
# Select mediators
mediators_subset = names(sort(hdmax2_step1$max2_pvalues)[1:10])
mediators_top10 = simu_data$M[, mediators_subset]
# Run {hdmax2} step 2
hdmax2_step2 = hdmax2::estimate_effect(object = hdmax2_step1, 
                                       m = mediators_top10)
#> Estimating indirect effect for univariate exposome.
#> The input exposome is categorial
#> categorial exposome design matrix transformation
#> Generate regression 1 for categorial exposure and mediator 1
#> Generate regression 2 for continuous outcome and mediator 1
#> Generate regression 1 for categorial exposure and mediator 2
#> Generate regression 2 for continuous outcome and mediator 2
#> Generate regression 1 for categorial exposure and mediator 3
#> Generate regression 2 for continuous outcome and mediator 3
#> Generate regression 1 for categorial exposure and mediator 4
#> Generate regression 2 for continuous outcome and mediator 4
#> Generate regression 1 for categorial exposure and mediator 5
#> Generate regression 2 for continuous outcome and mediator 5
#> Generate regression 1 for categorial exposure and mediator 6
#> Generate regression 2 for continuous outcome and mediator 6
#> Generate regression 1 for categorial exposure and mediator 7
#> Generate regression 2 for continuous outcome and mediator 7
#> Generate regression 1 for categorial exposure and mediator 8
#> Generate regression 2 for continuous outcome and mediator 8
#> Generate regression 1 for categorial exposure and mediator 9
#> Generate regression 2 for continuous outcome and mediator 9
#> Generate regression 1 for categorial exposure and mediator 10
#> Generate regression 2 for continuous outcome and mediator 10
#> Computing ODE and OTE for continuous outcome.
#> Generate regression 1 for categorial exposure and mediator 1
#> Generate regression 2 for continuous outcome and mediator 1
#> Generate regression 1 for categorial exposure and mediator 2
#> Generate regression 2 for continuous outcome and mediator 2
#> Generate regression 1 for categorial exposure and mediator 3
#> Generate regression 2 for continuous outcome and mediator 3
#> Generate regression 1 for categorial exposure and mediator 4
#> Generate regression 2 for continuous outcome and mediator 4
#> Generate regression 1 for categorial exposure and mediator 5
#> Generate regression 2 for continuous outcome and mediator 5
#> Generate regression 1 for categorial exposure and mediator 6
#> Generate regression 2 for continuous outcome and mediator 6
#> Generate regression 1 for categorial exposure and mediator 7
#> Generate regression 2 for continuous outcome and mediator 7
#> Generate regression 1 for categorial exposure and mediator 8
#> Generate regression 2 for continuous outcome and mediator 8
#> Generate regression 1 for categorial exposure and mediator 9
#> Generate regression 2 for continuous outcome and mediator 9
#> Generate regression 1 for categorial exposure and mediator 10
#> Generate regression 2 for continuous outcome and mediator 10
#> Computing ODE and OTE for continuous outcome.
#> Generate regression 1 for categorial exposure and mediator 1
#> Generate regression 2 for continuous outcome and mediator 1
#> Generate regression 1 for categorial exposure and mediator 2
#> Generate regression 2 for continuous outcome and mediator 2
#> Generate regression 1 for categorial exposure and mediator 3
#> Generate regression 2 for continuous outcome and mediator 3
#> Generate regression 1 for categorial exposure and mediator 4
#> Generate regression 2 for continuous outcome and mediator 4
#> Generate regression 1 for categorial exposure and mediator 5
#> Generate regression 2 for continuous outcome and mediator 5
#> Generate regression 1 for categorial exposure and mediator 6
#> Generate regression 2 for continuous outcome and mediator 6
#> Generate regression 1 for categorial exposure and mediator 7
#> Generate regression 2 for continuous outcome and mediator 7
#> Generate regression 1 for categorial exposure and mediator 8
#> Generate regression 2 for continuous outcome and mediator 8
#> Generate regression 1 for categorial exposure and mediator 9
#> Generate regression 2 for continuous outcome and mediator 9
#> Generate regression 1 for categorial exposure and mediator 10
#> Generate regression 2 for continuous outcome and mediator 10
#> Computing ODE and OTE for continuous outcome.
# Generate plot
hdmax2::plot_univariate_cat(hdmax2_step2,  plot_type= "all_plot")



#> [[1]]
#> TableGrob (2 x 2) "arrange": 4 grobs
#>   z     cells    name           grob
#> 1 1 (1-1,1-1) arrange gtable[layout]
#> 2 2 (1-1,2-2) arrange gtable[layout]
#> 3 3 (2-2,1-1) arrange gtable[layout]
#> 4 4 (2-2,2-2) arrange gtable[layout]
#> 
#> [[2]]
#> TableGrob (2 x 2) "arrange": 4 grobs
#>   z     cells    name           grob
#> 1 1 (1-1,1-1) arrange gtable[layout]
#> 2 2 (1-1,2-2) arrange gtable[layout]
#> 3 3 (2-2,1-1) arrange gtable[layout]
#> 4 4 (2-2,2-2) arrange gtable[layout]
#> 
#> [[3]]
#> TableGrob (2 x 2) "arrange": 4 grobs
#>   z     cells    name           grob
#> 1 1 (1-1,1-1) arrange gtable[layout]
#> 2 2 (1-1,2-2) arrange gtable[layout]
#> 3 3 (2-2,1-1) arrange gtable[layout]
#> 4 4 (2-2,2-2) arrange gtable[layout]
#>