P-values adjusted for latent factors computed by lfmm2
lfmm2_med_test.Rd
The function returns a vector of p-values for association
between potential mediators and exposure/outcome variables adjusted for latent factors
computed by lfmm2
. As input, it takes an object of class
lfmm2Class
with the data that were used to adjust the LFMM.
If full
is set to FALSE
, the function computes significance
values (p-values) for each exposure variable, otherwise it returns
p-values for the full set of exposure variables.
Usage
lfmm2_med_test(
object,
input,
env,
covar,
full = FALSE,
genomic.control = TRUE,
linear = TRUE,
family = binomial(link = "logit")
)
Arguments
- object
lfmm2Class object
- input
a response variable matrix with n rows and p columns
- env
An explanatory variable matrix with n rows and d columns.
- covar
covariables
- full
compute partial regression FALSE/TRUE
- genomic.control
correct pvalue with genomic inflation factor
- linear
true or false (else is logistic)
- family
of logistic reg
Examples
attach(simu_data)
#> The following objects are masked from simu_data (pos = 3):
#>
#> M, M1, M2, X_binary, X_categorial, X_continuous, X_continuous_2,
#> Y_binary, Y_continuous, age, gender
K = 5
mod.lfmm1 = lfmm2_med(input = simu_data$M1,
env = simu_data$X_binary,
K = K,
effect.sizes = FALSE)
res_reg1 = lfmm2_med_test(mod.lfmm1,
input = simu_data$M1,
env = simu_data$X_binary,
covar = cbind(simu_data$age, simu_data$gender),
genomic.control = TRUE)