P-values adjusted for latent factors computed by lfmm2
lfmm2_med_test.RdThe function returns a vector of p-values for association
between potential mediators and exposure/outcome variables adjusted for latent factors
computed by lfmm2. As input, it takes an object of class
lfmm2Class with the data that were used to adjust the LFMM.
If full is set to FALSE, the function computes significance
values (p-values) for each exposure variable, otherwise it returns
p-values for the full set of exposure variables.
Usage
lfmm2_med_test(
object,
input,
env,
covar,
full = FALSE,
genomic.control = TRUE,
linear = TRUE,
family = binomial(link = "logit")
)Arguments
- object
lfmm2Class object
- input
a response variable matrix with n rows and p columns
- env
An explanatory variable matrix with n rows and d columns.
- covar
covariables
- full
compute partial regression FALSE/TRUE
- genomic.control
correct pvalue with genomic inflation factor
- linear
true or false (else is logistic)
- family
of logistic reg
Examples
attach(simu_data)
#> The following objects are masked from simu_data (pos = 3):
#>
#> M, M1, M2, X_binary, X_categorial, X_continuous, X_continuous_2,
#> Y_binary, Y_continuous, age, gender
K = 5
mod.lfmm1 = lfmm2_med(input = simu_data$M1,
env = simu_data$X_binary,
K = K,
effect.sizes = FALSE)
res_reg1 = lfmm2_med_test(mod.lfmm1,
input = simu_data$M1,
env = simu_data$X_binary,
covar = cbind(simu_data$age, simu_data$gender),
genomic.control = TRUE)